
1

Latency tools

Pierre Bossart, October 8, 2015

2

Latency tools

Code on https://github.com/01org/AudioLatencyTools
App to measure
•  Cold latency
•  Continuous latency
Based on FTDI USB-to-serial -> gpio available on all Android and Chrome platforms
App toggles GPIO before action, scope grabs gpio and analog headset output
~1ms resolution, limited jitter

3

Latency tools

4

Power consumption optimizations:

Pierre Bossart, October 8, 2015

5

Patches coming to mainline

•  DeepBuffer (typically ~100ms or more)
•  Available on most Android Nexus devices
•  Will be available on all Intel platforms
•  Output mixed in hardware/firmware, used when latency does not matter.
•  Pulseaudio: need notion of sink groups

•  Need to disable rewinds on deep-buffer
•  Help tell hardware it can fetch more data from ring buffer

•  Provide DMA burst information for cases where rewinds are still used
•  Worst-case

6

ACPI & audio drivers:

Pierre Bossart, October 8, 2015

7

ACPI and DeviceTree: why can’t we be friends?

•  ARM platforms use DeviceTree bindings
•  New solution introduced in 3.19 to provide similar

functionality
•  Typically straightforward code change
•  device_property_xxx() instead of of_property_xxx()
•  Representation in BIOS uses _DSD properties

›  Introduction from Rafael Wysocki at
http://events.linuxfoundation.org/sites/events/files/slides/
ACPI_vs_DT.pdf

8

ACPI support and _DSD properties

•  May require upgrade to gpiod framework
•  Less straightforward as DeviceTree for hierarchical information, additional information

adopted by ASWG
•  http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.pdf
•  Only indirect nesting supported.

•  To test codec in ACPI environment
•  Option1: be selected as a lead partner
•  Option2: use the MinnowBoard Max

•  Open hardware, open firmware, works with your distro of choice and Android.
•  Minor modifications to set _HID and _DSD properties in firmware
•  Use low-speed connector to wire-up I2C and I2C

9

ACPI and machine drivers

•  No direct way to use DeviceTree/simple-card bindings
•  Phandle not modeled
•  No top-level mode for sound card, not really compatible with Windows-oriented BIOS.

•  Current solution:
•  Detect board based on combination of SOC+codec pair and load relevant machine driver
•  Some DMI-based quirks

•  Desired solution being worked on
•  Use audio configuration passed by BIOS
•  _DSD properties to set quirks or board changes.

10

SoundWire Linux support:

Pierre Bossart, October 8, 2015

11

SoundWire in a nutshell

•  MIPI standard currently accessible to MIPI members only
•  Public information released: AES paper and webminar

•  Mipi.org . Learning Center . MIPI Alliance SoundWire Overview Webinar

SoundWire introduction
•  Timelines

–  Initial discussions in June 2012, ratified in February 2015
–  Contributions from ~16 MIPI contributor companies

•  Key features
–  Two-pin dual-data rate multi-drop bus for audio applications (1.2 or 1.8V)
–  Robustness and Scalability (clock and multiple lanes)
–  Low power, low latency, well-bounded (PHY and transport)
–  Support for multiple streams, formats (PCM/PDM/DATA), modes (isoc/async/block)
–  Embedded control/commands
–  In-band interrupts/wakes, support for low-power jack detection

•  Benefits:
–  New use cases not possible with existing interfaces (I2S, SLIMbus®, HDAudio)
–  New system topologies across mobile and mobile-influenced industries
–  Lower gate count allows for integration in cost-sensitive devices

© 2015 MIPI Alliance, Inc. All rights reserved. Page 12

Example topologies

© 2015 MIPI Alliance, Inc. All rights reserved. Page 13

M S ADC

S DAC

S DAC

S ADC

Data
ClockApplication

Processor

M S

ADC

DAC

DAC

Data[0]

ADC

S

Clock

Data[0]

Data[0]

Data[1]
Data[2]

Data[1]

Data[1]
SData[0]

Data[2]

Data[1]

Audio
Codec

BT
FM Radio

DSP

Application
Processor

M S ADC

S DAC

S DAC

S ADC

Data
Clock

M
SData[0]

S

Clock

Data

Data[0]

Data[1]

Data[1]

BT
FM Radio

Bridge

Application
Processor

AP	
 direct-­‐a,ach	

Bridges,	
 inter-­‐chip	
 link	

Inter-­‐chip	
 link,	
 mul9-­‐lane	
 support	

Example topologies (2)

© 2015 MIPI Alliance, Inc. All rights reserved. Page 14

M

S DAC

S DAC

M
Clock
Data

Data
ClockApplication

Processor

ADCS

S ADC

DACS

S DACM S ADC

S DAC

S DAC

S ADC

S DAC

S DAC

M
Clock
Data

Data
ClockApplication

Processor

Func9onal	
 par99oning	
 Rou9ng/use	
 case	
 par99oning	

Comparison with other interfaces

© 2015 MIPI Alliance, Inc. All rights reserved. Page 15

Other	
 bus	
 Pro	
 SoundWire	
 Con	
 SoundWire	

I2S/TDM	
 Lower	
 pin	
 count,	
 clock	
 scaling,	
 dynamic	
 slot	
 mapping,	

burst	
 mode,	
 command	
 embedded	
 with	
 data	
 (No	
 need	

for	
 I2C/SPI),	
 in-­‐band	
 interrupt	
 capability	
 (no	
 need	
 for	

GPIO),	
 support	
 for	
 PDM	

Slight	
 command	
 overhead,	
 no	
 ability	
 to	

switch	
 Master/Slave	
 roles	
 for	
 clock	

PDM	
 Clock	
 scaling,	
 embedded	
 command	
 and	
 control,	

interrupt	
 capability	

Overhead	
 is	
 70%	
 for	
 dual-­‐mic,	
 less	
 than	

5%	
 for	
 single	
 mic-­‐mode.	
 In	
 mul9lane	

mode	
 power	
 consump9on	
 is	
 lower	
 than	

PDM.	

HDAudio	
 Clock	
 scaling,	
 lower	
 pin	
 count,	
 support	
 for	
 PDM,	
 scales	

to	
 simple	
 devices	

Lower	
 bandwidth	
 device	
 class	

func9onality	
 not	
 yet	
 standardized	

SLIMbus	
 Lower	
 gate	
 count	
 allows	
 for	
 integra9on	
 in	
 cost-­‐sensi9ve	

devices,	
 simpler	
 protocol,	
 low	
 latency	
 PDM	
 support,	

lower	
 power	
 with	
 adjustable	
 Frame	
 size	
 and	
 double-­‐data	

rate	

No	
 clock	
 and	
 manager	
 hand-­‐over	

capabili9es.	
 Only	
 Master	
 and	
 Monitor	

can	
 send	
 messages.	

16

SoundWire impact on Linux

•  Need for generic bus driver to handle link configurations
•  Device enumeration and assignment of DeviceNumber (logical address)
•  Clock changes, bandwidth allocation (dynamic or presets)
•  Stream start/stop sequences

•  Codec driver handles all audio/non-standard features
•  Similar to I2C, abstracted through regmap

•  SoundWire device capabilities
•  Extracted from firmware – MIPI document with list of properties to be released

•  Can help share code between implementations, e.g. for enabling transport

•  Or hard-coded in codec driver

17

SoundWire/Linux: known issues to sort out

•  Different topologies allowed by spec
•  SoundWire Master can be in SOC/Chipset
•  SoundWire Master can be in audio codec (bridged over Hdaudio or I2S/I2C)

•  No mandatory master registers
•  Need to abstract out an interface that caters to different implementations.

•  ‘Atomic’ reconfigurations on Master(s) and Slave(s)
•  Mapping ‘Ports’ to DAIs

•  DAI concept was straightforward with point-to-point connections
•  Was extended with TDM links but was still 1:N
•  Gets more complex with SoundWire M(p):N(q)

•  Same ‘logical stream’ can originate from one or more Source ports in one or more devices and be consumed by one or more Sink
ports in one or more devices

•  Same ports can be repurposed based on use case
•  Ports can be reconfigured as sink or source

