Latency tools

Latency tools

Code on https://github.com/01org/AudioLatencyTools App to measure

- Cold latency
- Continuous latency

Based on FTDI USB-to-serial -> gpio available on all Android and Chrome platforms App toggles GPIO before action, scope grabs gpio and analog headset output ~1ms resolution, limited jitter

010

Latency tools

Power consumption optimizations:

Patches coming to mainline

- DeepBuffer (typically ~100ms or more)
 - Available on most Android Nexus devices
 - · Will be available on all Intel platforms
 - Output mixed in hardware/firmware, used when latency does not matter.
 - Pulseaudio: need notion of sink groups
- Need to disable rewinds on deep-buffer
 - Help tell hardware it can fetch more data from ring buffer
- Provide DMA burst information for cases where rewinds are still used
 - Worst-case

ACPI & audio drivers:

ACPI and DeviceTree: why can't we be friends?

- ARM platforms use DeviceTree bindings
- New solution introduced in 3.19 to provide similar functionality
- Typically straightforward code change
 - device_property_xxx() instead of of_property_xxx()
 - Representation in BIOS uses _DSD properties
 - Introduction from Rafael Wysocki at <u>http://events.linuxfoundation.org/sites/events/files/slides/</u> <u>ACPI_vs_DT.pdf</u>

ACPI support and _DSD properties

- May require upgrade to gpiod framework
- Less straightforward as DeviceTree for hierarchical information, additional information adopted by ASWG
 - <u>http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.pdf</u>
 - Only indirect nesting supported.
- To test codec in ACPI environment
 - Option1: be selected as a lead partner
 - Option2: use the MinnowBoard Max
 - Open hardware, open firmware, works with your distro of choice and Android.
 - Minor modifications to set _HID and _DSD properties in firmware
 - Use low-speed connector to wire-up I2C and I2C

ACPI and machine drivers

- No direct way to use DeviceTree/simple-card bindings
 - Phandle not modeled
 - No top-level mode for sound card, not really compatible with Windows-oriented BIOS.
- Current solution:
 - Detect board based on combination of SOC+codec pair and load relevant machine driver
 - Some DMI-based quirks
- Desired solution being worked on
 - Use audio configuration passed by BIOS
 - _DSD properties to set quirks or board changes.

SoundWire Linux support:

SoundWire in a nutshell

- MIPI standard currently accessible to MIPI members only
- Public information released: AES paper and webminar
 - Mipi.org . Learning Center . MIPI Alliance SoundWire Overview Webinar

SoundWire introduction

- Timelines
 - Initial discussions in June 2012, ratified in February 2015
 - Contributions from ~16 MIPI contributor companies
- Key features
 - Two-pin dual-data rate multi-drop bus for audio applications (1.2 or 1.8V)
 - Robustness and Scalability (clock and multiple lanes)
 - Low power, low latency, well-bounded (PHY and transport)
 - Support for multiple streams, formats (PCM/PDM/DATA), modes (isoc/async/block)
 - Embedded control/commands
 - In-band interrupts/wakes, support for low-power jack detection
- Benefits:
 - New use cases not possible with existing interfaces (I²S, SLIMbus®, HDAudio)
 - New system topologies across mobile and mobile-influenced industries
 - Lower gate count allows for integration in cost-sensitive devices

mipralliance

© 2015 MIPI Alliance, Inc. All rights reserved.

Example topologies

Bridges, inter-chip link

Application Processor

Application Processor

mipralliance

© 2015 MIPI Alliance, Inc. All rights reserved.

Example topologies (2)

Functional partitioning

mipiralliance © 2015 MIPI Allia

Routing/use case partitioning

© 2015 MIPI Alliance, Inc. All rights reserved.

Page 14

Comparison with other interfaces

Other bus	Pro SoundWire	Con SoundWire
I ² S/TDM	Lower pin count, clock scaling, dynamic slot mapping, burst mode, command embedded with data (No need for I ² C/SPI), in-band interrupt capability (no need for GPIO), support for PDM	Slight command overhead, no ability to switch Master/Slave roles for clock
PDM	Clock scaling, embedded command and control, interrupt capability	Overhead is 70% for dual-mic, less than 5% for single mic-mode. In multilane mode power consumption is lower than PDM.
HDAudio	Clock scaling, lower pin count, support for PDM, scales to simple devices	Lower bandwidth device class functionality not yet standardized
SLIMbus	Lower gate count allows for integration in cost-sensitive devices, simpler protocol, low latency PDM support, lower power with adjustable Frame size and double-data rate	No clock and manager hand-over capabilities. Only Master and Monitor can send messages.

SoundWire impact on Linux

- Need for generic bus driver to handle link configurations
 - Device enumeration and assignment of DeviceNumber (logical address)
 - Clock changes, bandwidth allocation (dynamic or presets)
 - Stream start/stop sequences
- Codec driver handles all audio/non-standard features
 - Similar to I2C, abstracted through regmap
- SoundWire device capabilities
 - Extracted from firmware MIPI document with list of properties to be released
 - Can help share code between implementations, e.g. for enabling transport
 - Or hard-coded in codec driver

16

SoundWire/Linux: known issues to sort out

- Different topologies allowed by spec
 - SoundWire Master can be in SOC/Chipset
 - SoundWire Master can be in audio codec (bridged over Hdaudio or I2S/I2C)
- No mandatory master registers
 - Need to abstract out an interface that caters to different implementations.
- 'Atomic' reconfigurations on Master(s) and Slave(s)
- Mapping 'Ports' to DAIs
 - DAI concept was straightforward with point-to-point connections
 - Was extended with TDM links but was still 1:N
 - Gets more complex with SoundWire M(p):N(q)
 - Same 'logical stream' can originate from one or more Source ports in one or more devices and be consumed by one or more Sink ports in one or more devices
 - Same ports can be repurposed based on use case
 - Ports can be reconfigured as sink or source

17